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SUMMARY

An immiscible liquid–liquid multiphase flow in a cross-junction microchannel was numerically studied
using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by
introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step
was replaced by the anti-diffusion scheme in the mixed region to reduce the side-effect and control the
thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace’s
law and spurious velocities were examined. The results show that our model is more advantageous for
simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results
of multiphase flow in a cross-junction microchannel were obtained and analyzed based on dimensionless
numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux.
However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation.
For this case, the flow is determined by both the capillary number and the Weber number. Copyright q
2007 John Wiley & Sons, Ltd.

Received 30 November 2006; Revised 11 April 2007; Accepted 4 October 2007

KEY WORDS: immiscible fluids; lattice Boltzmann method; spurious velocity; surface tension; cross-
junction microchannel

1. INTRODUCTION

Nowadays, miniaturized chemical reactors are widely used due to their high portability, reduced
reagent consumption, minimization of waste production and excellent mass and heat transfer
properties [1]. Some of these devices have already been used for catalyst screening tools and
food, cosmetics and pharmaceutical products. Recently, immiscible liquid–liquid multiphase flows
in microchannels have attracted extensive attention owing to the segmentation of the two fluids,
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whereby the chemical reaction, mixing and diffusion of the solutes can be enhanced greatly. On the
other hand, microdroplets can be produced in such a liquid–liquid system in the microchannel under
certain conditions. The efficiency for generating microdroplets and properties of the liquid–liquid
flow in microchannels is mainly influenced by the channel geometry, viscosity, interfacial tension,
the inlet flux of two liquids and so on. The various parameters involved mean that optimizing the
liquid–liquid multiphase flow in microreactors requires extensive experimental work. Therefore,
a numerical study on such a system is indispensable to provide a reasonable and economically
designed process.

As is well known, the variety and complexity of multiphase flows pose major challenges to
a modeling approach. Accurate simulation of multiphase flow problems with a moving interface
requires obtaining a sharp interface and recovering surface tension, which is often quite difficult for
computational fluid dynamics (CFD) researchers. Several techniques were developed in the past 25
years and can be classified into three main categories according to their physical and mathematical
approaches: capturing (Lagrangian), tracking (Eulerian) and combined methods. Among the various
approaches of multiphase flow simulation, volume-of-fluid (VOF) [2], level set method [3] and
front-tracking method [4] are known as useful and popular tools. Further new developments on
capturing the interface include the particle-mesh method [5], the CIP method [6], the LBM method
[7] and so on.

For the simulation of multiphase flow in microchannels, although the mentioned CFD packages
can provide a general description of droplet formation, simulations by traditional computation
fluid dynamics are computationally expensive, partially due to interface-tracking costs. Another
challenge is the combination of very low velocity and small capillary number Ca, which means that
spurious velocities (present in most computational schemes) become comparable to the modeled
flow velocity in magnitude. To overcome the difficulties mentioned above, the lattice Boltzmann
method is employed in this study. An improved immiscible lattice BGK model is also proposed
with the spurious velocities significantly reduced.

The objective of this study is to achieve a better understanding of droplet formation in a
cross-junction microchannel. First, we proposed an improved immiscible fluid model based on the
lattice Boltzmann method. Next, to test our code, Static bubble flows were simulated. The results
were compared with those simulated by some existing models. Then, the simulations of droplet
formation were performed and compared with experimental results. Finally, a dimensionless study
was presented to illustrate the influence of the capillary number and Weber number on the final
droplet size.

2. NUMERICAL METHOD

In this section, the original immiscible lattice BGK model (Gunstensen model [8]) is reviewed
briefly and then two other improved versions are presented, including the Lishchuk model [9] and
the Latva-Kokko model [10]; finally, a more reasonable variation is given in detail.

2.1. Existing models

Gunstensen [8] reported the first immiscible lattice BGK model for multiphase flow. Two fluids
denoted by different colors, red and blue, obey the lattice Boltzmann equation as

f ki (x+ei , t+1)− f ki (x, t)=�k
i (x, t) (1)
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where f ki (x, t) is the particle distribution function in the i th velocity direction for the kth fluid
(red or blue) at position x and time t . ei is the particle velocity of the i th direction. These particle
distribution functions evolve according to Equation (1). The collision operator, �k

i (x, t), is split
into two parts. The first part denoted by (�k

i )
1 is the same as the BGK single-phase collision term

and can be simplified as

(�k
i )

1=− 1

�k
[ f ki (x, t)− f k(eq)i (x, t)] (2)

where f k(eq)i (x, t) is the equilibrium distribution function at position x and time t , and �k is the
single-relaxation time for the kth fluid. The second part of the collision operator (perturbation
step) for the 2-D 7-speed model is given as [8]

(�k
i )

2= A|G|cos2(�i −� f ) (3)

where A is the adjustable surface tension parameter, �i is the angle of lattice direction i and � f
is the angle of the local gradient of the color field G, which is defined as

G(x, t)=∑
i
ei [�r(x+ei , t)−�b(x+ei , t)] (4)

where �r and �b are densities of red and blue fluids. To prevent the two fluids from mixing with
each other, the so-called recoloring step is applied. The basic idea of recoloring is to keep the
sharpness of interface by reallocating f ki (x, t) in the mixed region at the collision step, so that as
few colored particles as possible cross the interface. The colored particles are demixed relative to
the color field by maximizing the work done by the color flux q(x, t) [8],

q(x, t)=∑
i
ei [ f ri (x, t)− f bi (x, t)] (5)

Because of this ‘recolor’ procedure, particles of each color tend to congregate together. Thus, the
two fluids are forced to be immiscible.

Based on Gunstensen model, Lishchuk [9] modified the algorithm by replacing the perturbation
step with a direct force term at the mixed region. This force term is used to recover the required
pressure difference across the interface, which is known as Laplace’s law. Lishchuk’s approach
is a very different process compared with Gunstensen’s method. It builds up the inner pressure
of the droplet through a net body force acting at the interface. This step causes the interfacial
length to decrease slightly and also produces the desired surface tension. It has already been
reported that Lishchuk’s method provides much better drop isotropy and reduces spurious velocities
significantly. This enhanced behavior is probably due to its second-order gradient quantities that
make the surface tension less local than that in Gunstensen’s method [9].

For Gunstensen’s method, the recoloring step serves as an artificial anti-diffusion for separating
the two phases by maximizing the work of the color flux in the original immiscible lattice BGK
model. This kind of anti-diffusion has an adverse side effect at the interface, which makes the
interface profile to be zigzag. This may be caused by the lack of diffusion along the interface.
Thus, it is a natural idea to seek help in the replacement of the recoloring method with a moderate
diffusion procedure. Recently, Latva-Kokko and Rothman [10] reported a new scheme for the
recoloring step by introducing an adjustable parameter �, which controls the strength of phase
diffusion. This model is discussed in detail in Section 2.2. Although Latva-Kokko’s idea is used
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to fix the lattice pinning problem of the original immiscible lattice BGK model, its improvement
can also be used for resolving the side-effect problem. It should also be noted that this improved
recoloring step is much easier to implement than the old one (Gunstensen model). With the
improved method, the distribution of red and blue particles is symmetric around the color gradient.

2.2. Our improved model

Based on the above discussions, we modify the Gunstensen model by replacing the perturbation
step with a direct force term at the mixed region (interface) and change the recoloring step by
including moderate diffusion along the interface.

With the same notations, the lattice Boltzmann equation for the kth component can be expressed
in the same form as Equation (1), with the collision term being

�k
i (x, t)=− 1

�k
[ f ki (x, t)− f k(eq)i (x, t)] (6)

The 2-D 9-speed square lattice is chosen in the present method, so that a suitable equilibrium
distribution function takes the form

f k(eq)i =wi�
k(1+3ei�u�+ 9

2ei�ei�u�u�− 3
2u

2) (7)

with w0= 4
9 , wi = 1

9 for i=1,2,3,4, wi = 1
36 for i=5,6,7,8.

In Equation (6), �k is the relaxation time for each kind of fluid. It is also used to decide the
value of kinematic viscosity as

�= 2�−1

6
(8)

where � is the relaxation time for the color blind fluid and is defined as �=∑
�k�k/�. These

collision and relaxation rules lead to the following macroscopic mass and momentum equations
[11] as:

�t�+∇ ·(�u)=0 (9)

�tu+u·∇u=−1

�
∇ p+�∇2u (10)

The densities �k for different phases, the total density �, momentum �u and pressure p are obtained
from the following equations:

�k =
8∑

i=0
f ki =

8∑
i=0

f k(eq)i (11)

�=∑
k

�k (12)

�u=
8∑

i=0
ei fi =

8∑
i=0

ei f
eq
i (13)

p= 1
3� (14)
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In order to recover the surface tension effect, a local pressure gradient across the interface is forced
by an additional force term. A popular model for the interfacial tension force is the continuum
surface force (CSF) model, which was developed by Brackbill et al. in 1992 [12]. In the CSF
model the interfacial tension was interpreted as a continuous 3-D effect across an interface rather
than as a pressure boundary condition on the interface. It is used in our multiphase simulation
due to its easy implementation and high accuracy. After applying the surface tension force, the
equilibrium distribution functions are the same as the ones given in Equation (7) except the velocity
u is replaced by the equilibrium velocity ueq, which is defined by the following relation:

�ueq=�u+�F (15)

The surface tension force F is added to the common velocity u and modeled as follows [12]:

F=��
∇C

|∇C | (16)

where � is the surface tension coefficient. The color field C(x, t) and interface curvature � are
given as

C(x, t)=�r(x, t)−�b(x, t) (17)

�=−(∇ · n̂)= 1

|n|
[(

n
|n| ·∇

)
|n|−(∇ ·n)

]
(18)

where n̂(x) is the unit normal to the interface and n̂(x)=n(x)/|n(x)|. The normal vector n(x) is
defined as

n(x)=∇C(x) (19)

The two parts inside the bracket of Equation (18) can be calculated as follows:

(∇ ·n)i, j =
(

�nx
�x

)
i, j

+
(

�ny
�y

)
i, j

= 1

2�x
[nx,i+1/2, j+1/2+nx,i+1/2, j−1/2−nx,i−1/2, j+1/2−nx,i−1/2, j−1/2]

+ 1

2�y
[ny,i+1/2, j+1/2+ny,i−1/2, j+1/2−ny,i+1/2, j−1/2−ny,i−1/2, j−1/2] (20)

(
ni, j
|ni, j | ·∇

)
|n|=

(
nx
|n|

)
i, j

(
�|n|
�x

)
i, j

+
(
ny
|n|

)
i, j

(
�|n|
�y

)
i, j

(21)
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Figure 1. Numerical confirmation of Laplace’s law by the present method.

The normal vector ni, j on the grid point and cell-centered vector ni+1/2, j+1/2 are calculated by
the following equations:

ni, j = 1
4 (ni+1/2, j+1/2+ni+1/2, j−1/2+ni−1/2, j+1/2+ni−1/2, j−1/2) (22)

ni+1/2, j+1/2 = x̂
(
Ci+1, j +Ci+1, j+1−Ci, j −Ci, j+1

2�x

)

+ŷ
(
Ci, j+1+Ci+1, j+1−Ci, j −Ci+1, j

2�y

)
(23)

The other improvement in our model is the modification of the recoloring step by implementing
Latva-Kokko’s diffusion scheme. The crucial part of this solution is to allow the red and the blue
fluid to moderately mix along the interface and to keep the color distribution symmetric with
respect to the color gradient. We use the following redistributions for the red and blue particles
after the collision step:

f ri = �r
�r+�b

fi +�
�r�b

(�r+�b)2
f eq(0)i cos	 (24)

f bi = �b
�r+�b

fi −�
�r�b

(�r+�b)2
f eq(0)i cos	 (25)

where fi and f eq(0)i are the color blind distribution functions and zero-velocity equilibrium distri-
bution functions going to the i th direction, respectively. 	, defined in Equation (26), is the angle
between the color gradient and the particle velocities ei . � is the parameter relating to the tendency
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Figure 2. The distribution of velocity vectors for different models with surface tension being �=0.001. (a)
Gunstensen’s original two-color model, (b) Latva-Kokko’s two-color model with diffusion, (c) Lishchuk’s
two-color model with surface tension based on continuum physics, and (d) Present model with surface

tension based on continuum physics and Latva-Kokko’s scheme.

of the two fluids to separate

cos	|i = G ·ei
|G||ei | (26)

where G is the local gradient of the color field with the same definition as given in Equation (4).
Without the last term in Equations (24) and (25), red and blue particles would be distributed
according to their numbers and there would be no tendency for separation of the two fluids. Here,
� can take any value between 0 and 1 to control the diffusion and width of the interface. When �
is larger than 1, there can be negative populations of particles, but if the negative values are kept
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Figure 3. The thickness of the interface against various values of �.

small, the stability is maintained [10]. The relationship between the thickness of the interface and
� is discussed in the following section.

2.3. The advantage of current model

The usefulness of our new model is demonstrated for easily and accurately simulating multiphase
flow by the case of a static circular bubble with radius R. A 2-D (in the xy-plane) simulation is
performed in a 100×100 lattice cell system, and the periodic boundary conditions are employed.

First, we test Laplace’s law, which is given as

�P= Pin−Pout=�/R (27)

where Pin and Pout are the average pressures inside and outside the bubble, respectively. Simulations
with different initial bubble radii are performed, and the final radius R and the pressure differences
are recorded. Figure 1 is the plot of �P= Pin−Pout versus 1/R. The value of � used for the test of
Laplace’s law is set to be 0.001. In Figure 1, all points representing a radius from 8 to 20 almost fit
a straight line. The pressure difference inside and outside the bubble is indeed proportional to the
reciprocal of the radius for our simulations. This test shows that our method can correctly model
the surface tension effect.

Secondly, the spurious velocities are investigated for all the models discussed in Section 2.1.
Figure 2(a)–(d) shows velocity vector plots in the final stage of bubble evolution for various
models. The surface tension coefficient �=0.001 and the initial bubble radius R=15 are chosen in
these cases. Although there may be some small relative fluctuations as time evolves, they present
the typical behavior of the velocity field. The magnitude of the velocity is represented by the
length of the velocity vectors that have the same scale for all the models. The non-zero velocity
fields in these figures represent the deviation of the results from the physical problem, especially
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Figure 4. The interface profiles at various values of �: (a) �=0.5; (b) �=1.0; (c) �=1.5; and (d) �=2.0.

the velocities near the interface region. These non-zero velocities are called spurious velocities.
For these cases shown in Figure 2(a)–(d), the spurious velocities are much more serious in the
Gunstensen (a) and Latva-Kokko (b) models (based on the perturbation step method) than those
in the Lishchuk (c) and present models (d) (based on direct surface tension force). The spurious
velocities are closely related to the value of A (in Equation (3)) in the perturbation-based model
and can be reduced by using smaller values of A, but the surface tension decreases accordingly. In
our model, the spurious velocities obtained under the same conditions appear to be much smaller.
Furthermore, our model provides much better results than the Lishchuk model near the interface,
which is because the side effect has been reduced greatly by introducing moderate diffusion.

Finally, the thickness of the interface and its dependence on the parameter � (see Equations (24)
and (25)) are examined for the current model. The surface tension coefficient �=0.001 and the
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initial bubble radius R=20 are used here. Figure 3 shows the thickness of the interface against
� along the horizontal line at the middle of the computational area (y=50). From Figure 3, we
can find that the thickness of the interface decreases significantly with the increase in the value
of �. A very sharp interface can be obtained at large �. Figure 4 shows the interface profiles at
various values of �. Four typical values of � (0.5,1.0,1.5,2.0) are used for discussion. When �<1
(Figure 4(a)), the interface profiles are very smooth but not so sharp. When ��1 (Figure 4(b)–(d)),
the profiles become sharper than that at small value of �. The thickness of the interface can be
decreased effectively by increasing the value of �. Generally, it is better to control the interface as
sharp as possible, but when the interface becomes very sharp, minus density distribution (negative
population of particles) will occur near the interface as shown in Figure 4(c) and (d) (�>1).
Besides, when �>1, the sharpness cannot be improved efficiently by increasing � (see Figure 3).
Also, the minus density distribution becomes significant at large �. This may lead to some very
unreasonable results, since the density distributions are usually used for computing the average
properties at the interface. Based on the above discussion, a moderate value �=1 is used in the
following study to obtain a sharp interface and prevent the minus density distribution.

3. EXPERIMENTAL SETUP AND COMPUTATIONAL MODEL SYSTEM ON THE
DROPLET FORMATION IN A CROSS-JUNCTION MICROCHANNEL

3.1. Experimental setup

A cross-junction microchannel with three inlet ports and single outlet was used in this study as
shown in Figure 5. The widths of main and lateral channels are 200�m and 100�m, respectively.
The depth is 100�m for the whole channel (for experimental setup but not shown in Figure 5). Water
phase (denoted as A here) was introduced from the inlet of main channel, and oil phase (denoted as
B here) was injected from the inlet of one of the lateral channels. The other lateral channel was used
as the inlet channel for the water or oil phase as the case may be (oil phase was used in this study.
In the experiment, water with 3% PVA (
A=1.074×10−2 Pas and �A=1.03×103 kgm−3) was
used as the water phase. Freol ALPHA 10G (
B=2.441×10−2 Pas and �B=0.93×103 kgm−3)
was used as the oil phase. The interfacial tension is �=0.03Nm−1. The magnitudes of the average
inlet velocities are designated as uA for the water and uB for the oil. The velocity ratio is defined
as �=uA/uB. The channel was made of PDMS (polydimethylsiloxane) and was bonded to a glass
plate by means of the plasma treatment using the O2 plasma asher.

200µm

100µm

Organic phase 

Organic phase 

Water 
phase

Bu

Bu

Au

Lateral channel

Main channel

Lateral channel

Figure 5. Model system for droplet formation in a cross-junction microchannel.
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Figure 6. Schematic of the system setup. The micro-PIV system consists of a 10-bit high-speed CCD
camera, a microscope and syringe pumps.

Figure 6 shows the schematic illustration of the experimental setup. The micro-PIV system
consists of a 10-bit high-speed CCD camera (1200 h, PCO), a microscope (BX51, Olympus) and
syringe pumps. A 10-bit high-speed CCD camera with a 1280×1024 pixel resolution was used to
obtain time-resolved velocity fields as a microdroplet was formed. A halogen lamp was focused
and illuminated to a test section from the bottom of the microchannel. Then, shadows of particles
were formed on the image plane, unlike using fluorescent lights emitted from particles. Particles
with 1�m diameter were seeded into the working fluids: water-phase and oil-phase fluids. The
particles contained in an aqueous solution were dried and mixed with the oil-phase fluid to seed
the particles into the oil-phase fluid. Ultrasonic treatment and filtering were performed to disperse
particles and eliminate lumps of several particles after mixing dried particles and the oil-phase
fluid. To drive the flow, syringe-pumps were used.

3.2. Computational model system

The 2-D computational model system is shown in Figure 5. The velocity and viscosity ratios are set
to be uA/uB=1/6 and �=
A/
B=1, respectively. Both phases are assumed to be incompressible,
Newtonian and immiscible. The simulations are performed in a 300×60 cell system and each cell
corresponds to 10�m. This cell system was tested to be acceptable by comparing the results of a
finer cell system of 600×120 (each cell size corresponds to 5�m) in several different conditions.
The relative error between the results of two cell systems is not more than 5%. No-slip boundary
condition was applied for all the solid walls by the robust method of mid-link bounceback [13],
which conveniently resolves the complex wall shapes and ensures the correct flux ratio by preventing
the boundary ‘leakage error’ in small velocity cases. Inlet and outlet fluxes and an outlet pressure
(density) distribution were specified at every time step using an appropriate equilibrium f (0)

i (�,u)

[13].
Such flows are described by a large number of parameters including surface tension, variations in

density, inlet velocity and viscosity across the two fluids. Luckily, several parameters are naturally
small in this case. For instance, inertial effects are small compared with viscous effects, yielding
small Reynolds numbers. Gravitational effects will also generally be small compared with surface
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tension, yielding a small Bond number. In contrast, the capillary number (Ca) always dominates the
micro-flow, which describes the relative importance of viscosity and surface tension. The capillary
number is defined as

Ca=
U/� (28)

where 
 is the dynamic viscosity and set to be 
A in this study, U is a typical velocity and is chosen
to be the average inlet velocity of fluid A (uA) and � is the surface tension. Another important
dimensionless parameter is the Weber number (We), which is defined as

We=�U 2d/� (29)

with � being a typical density and d a length scale (the width of the main channel). The Weber
number represents the comparison between inertial effects and surface tension effects. Although
the length scales involved are small, the strong dependence on the velocity (squared term) can yield
large values of We. This is particularly true when fluids are ejected from a nozzle at high speed, as
in inkjet printing. Furthermore, several authors have reported the importance of the fluid interaction
with the walls. In order to generate structures of one fluid (fluid A) within another (fluid B),
fluid B (continuous phase) usually completely wets the walls of the microchannel while fluid A
(to-be-dispersed phase) is non-wetting. In the following section, also concentrate on the case where
only one fluid (fluid B) wets the walls. The same idea, as in Reference [14], is employed to recover
the wetness effect.

4. RESULTS AND DISCUSSIONS

4.1. Comparison between simulation and experiment

Figure 7 shows the process of droplet formation and the corresponding velocity fields obtained by
our numerical simulation and experiment. The numerical conditions are uA=0.0002, 
A=0.1 and
�=0.02, corresponding to Ca=0.001. Because the numerical and experimental conditions are not
completely the same and there also exists some disagreement between the 2-D simulation and 3-D
experiment, here only a qualitative comparison between simulation and experiment is made. First,
from Figure 7 it can be found that the numerical results (droplet formation process and velocity
field) agree very closely with the experimental results, which proves the ability of our model in
simulating such a problem. Secondly, it can be seen that droplet formation proceeds in three stages,
i.e. expansion (Figure 7(a)–(c)), necking (Figure 7(d)) and figuration (Figure 7(e)–(f)) stages. The
final droplet size is a result of these three stages. From the velocity field, we can observe in
the expansion stage (Figure 7(a)–(c)) that the velocity vectors are almost straightforward and no
vortices appear. In the necking stage (Figure 7(d)), at the neck place, phase A is split suddenly
to generate the droplet. This fast motion may be induced by strong surface tension forces, which
increase rapidly with the sudden change in the curvature of the interface. In the figuration stage
(Figure 7(e)), two symmetric vortices appear on the back of the generated droplet and on the
front of the droplet that is subsequently generated. These vortices are desirable for some chemical
reactions or mixing.
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Figure 7. Comparisons between the current results (left) and experiment (right) for flow
patterns and velocity vectors of different time steps: (a) 35 400; (b) 52 000; (c) 87 600;

(d) 918 000; (e) 92 700; and (f) 98 400.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:793–810
DOI: 10.1002/fld



806 L. WU ET AL.

Figure 8. The flow patterns for various parameters, row for same Ca, column for single parameter
changing, column (a) is for uA changing, column (b) is for 
A changing, column (c) is for � changing

(refer Table I for detailed conditions).

4.2. The influence of capillary number (Ca) and Weber number (We)

A series of simulations are performed with various interfacial tensions � (0.008–0.08Nm−1),
dynamic viscosities 
A (0.02–0.2Pas) and inlet velocities of the fluid A uA (0.0001–0.003ms−1),
which are the main parameters appearing in both the capillary number and the Weber number.

Figure 8 shows the flow patterns for various Ca. Three parameters included in Ca (Equation
(28)), i.e. inlet velocity (column a), viscosity (column b) and surface tension (column c), are studied
individually by fixing the other two parameters. Detailed conditions are listed in Table I. From
Figure 8, we find that the distance between two neighboring droplets increases with a decrease
in Ca (from rows 1 to 7, Ca decrease). At the same time, the size of the generated droplets also
increases when Ca decreases. At small Ca, the droplet diameter becomes larger than the width
of the channel and slugs are generated (Figure 8, rows 4–7). On the contrary, at larger capillary
number, the influence of the channel geometry decreases due to the smaller droplets generated,
which do not touch the channel walls. For each row in Figure 8, at the same Ca, the shape and
size of the droplets are almost the same, although the other dimensionless number We is different.
This means that under the current conditions, the influence of We is much smaller than Ca and the
flow pattern is decided by Ca predominantly. From the point of view of dimensionless analysis,
decreasing uA (column a) and 
A (column b) or increasing � (column c) leads to small Ca, which
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Table I. Corresponding parameters for Figures 8 and 9.

Ca

Parameters 0.025 (1) 0.02 (2) 0.0125 (3) 0.00833 (4) 0.00625 (5) 0.005 (6) 0.002 (7)

uA=

A=0.2 0.001 (a1) 0.0008 (a2) 0.0005 (a3) 0.00033 (a4) 0.00025 (a5) 0.0002 (a6) 0.0001 (a7)
�=0.008

uA=0.001

A= 0.2 (b1) 0.16 (b2) 0.1 (b3) 0.0667 (b4) 0.05 (b5) 0.04 (b6) 0.02 (b7)
�=0.008

uA=0.001

A=0.2 0.008 (c1) 0.01 (c2) 0.016 (c3) 0.024 (c4) 0.032 (c5) 0.04 (c6) 0.08 (c7)
�=
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Figure 9. The relative distance between two neighboring droplets at different Ca with adjustable parameters
uA,
A,� (refer Table I for the detailed parameter variations).

results in an increase in the distance between two neighboring droplets and an increase in the
droplet size.

Figure 9 shows the plot of Ca against the relative distance (dividing by the width of the main
channel) between two neighboring droplets. The value of Ca is changed by adjusting one of the
parameters (uA,
A,� representing each line, respectively) that comprise Ca, while the other two
are fixed. From Figure 9, it can be seen that the three lines are close to superposition. Again, it
proves that the flow mode is decided by Ca to a large extent under the current conditions. At
the same time, it is noticeable that the lines for velocity and surface tension variations diverge
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Figure 10. The flow patterns for various Ca (each row has same Ca) with two different We (column (a)
for 0.0075, column (b) for 0.0025) (refer Table II for detailed conditions).

from that of viscosity slightly. This may be because another dimensionless Weber number also
influences the flow simultaneously although its effect is much smaller under the current conditions.
Compared with Ca, for the parameters uA,
A and �, only uA and � appear in We (Equation (29)).
This may provide an explanation for the divergence between the lines of viscosity and the other
two. In addition, at large Ca, a divergence also appears between the lines of velocity and surface
tension variations. This is because of the squared term of velocity, which gives a much larger
contribution to We compared with surface tension. It is expected that for very large velocities,
except for Ca, the flow field may also be influenced by We. Next, we will test this assertion by
simulations.

Figure 10 shows the flow patterns for different We (We=0.0075, uA=0.003 for column (a);
We=0.0025, uA=0.001 for column (b)) under various Ca for each row. To study the influence
of We under large inlet velocities, viscosity is used to adjust the Ca because it is not included
in We. Detailed conditions are listed in Table II. From Figure 10, it is found that for small Ca
(Ca<0.00833, rows 4–7), the flow patterns are the same for different We, as shown in columns
(a) and (b). This is due to the relatively larger influence of Ca on the flow. However, with the
increase in Ca (Ca>0.0083, rows 1–3), We may share an influence together with Ca for the larger
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Table II. Corresponding parameters for Figures 10 and 11.

Ca

Parameters 0.025 (1) 0.02 (2) 0.0125 (3) 0.00833 (4) 0.00625 (5) 0.005 (6) 0.002 (7)

uA=0.003

0.2 (a1) 0.16 (a2) 0.1 (a3) 0.0667 (a4) 0.05 (a5) 0.04 (a6) 0.02 (a7)
A=
�=0.024
We=0.0075

uA=0.001

0.2 (b1) 0.16 (b2) 0.1 (b3) 0.0667 (b4) 0.05 (b5) 0.04 (b6) 0.02 (b7)
A=
�=0.008
We=0.0025
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Figure 11. The relative distance between two neighboring droplet at different Ca with adjustable parameters

A, u representing uA in the figure caption (refer Table II for the detailed parameter variations).

inlet velocity case (column (a) We=0.0075) and much smaller droplets generated (comparing
(a1) and (b1)). For the corresponding case of small velocity (column (b) We=0.0025), the flow
pattern still seems to be dominated by Ca only. Besides, in Figure 10 (a3) and (a7), the droplets
are formed in pairs in our simulations. At Ca=0.0125 (a3), the droplets in each pair have the
same size. However, the size of the droplets in the pairs are quite different for Ca=0.002 (a7).
The generation of binary droplets may result because the flow may be near a type of critical point.
In addition, for the case of a small Ca (a7), the surface tension effect is very strong compared with
the viscosity effect (
=0.02). Under such conditions, simulations may enlarge some numerical
error or unstable factors and generate very uneven droplets.

Figure 11 shows the plot of relative distance between two neighboring droplets (dividing by the
width of the main channel) versus Ca for different inlet velocities. At small Ca (Ca<0.00833),
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the two lines almost superpose. This is because the influence of We is much smaller compared
with that of Ca. When Ca is larger than 0.00833, the results become different between the cases of
uA=0.001 and 0.003. This difference becomes larger and larger with increasing Ca. It is because
in the large velocity case, the influence of We is large enough and comparable to that of Ca.

5. CONCLUSIONS

In the present work, we proposed a new LBM model. The utility of the current method for easily
and accurately simulating multiphase flows was demonstrated by the simulations of static bubble
flow. A 2-D simulation was carried out on the immiscible two-phase flow in a cross-junction
microchannel using this model. The influence of two dimensionless numbers, Ca and We, were
studied. The following conclusions were drawn:

(1) The present method has the advantage of decreasing the spurious velocities and artificial
side effect around the interface over some existing models.

(2) In the simulation of two-phase flow in a cross-junction microchannel, the flow pattern and
velocity field agree well with the experimental results in a qualitative analysis.

(3) The flow patterns are decided almost entirely by Ca for small inlet velocities.
(4) When the inlet velocity is large, the flow mode is not decided only by Ca and the influence

of the We is also significant because of the squared velocity term.
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